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Abstract
Disordered speech recognition is a highly challenging task. The
underlying neuro-motor conditions of people with speech disor-
ders, often compounded with co-occurring physical disabilities,
lead to the difficulty in collecting large quantities of speech re-
quired for system development. This paper investigates a set
of data augmentation techniques for disordered speech recog-
nition, including vocal tract length perturbation (VTLP), tempo
perturbation and speed perturbation. Both normal and disor-
dered speech were exploited in the augmentation process. Vari-
ability among impaired speakers in both the original and aug-
mented data was modeled using learning hidden unit contri-
butions (LHUC) based speaker adaptive training. The final
speaker adapted system constructed using the UASpeech cor-
pus and the best augmentation approach based on speed per-
turbation produced up to 2.92% absolute (9.3% relative) word
error rate (WER) reduction over the baseline system without
data augmentation, and gave an overall WER of 26.37% on the
test set containing 16 dysarthric speakers.
Index Terms: Speech Disorders, Speech Recognition, Data
Augmentation, Speaker Adaptive Training

1. Introduction
Speech disorders affect millions of people all over the world,
severely degrading their quality of life. They may be caused
by a range of medical conditions, such as cerebral palsy [1],
Parkinson disease [2] and stroke [3]. Speech disorders are al-
ways associated with difficulties in controlling articulators re-
sponsible for speech, which creates a large mismatch against
normal speech [4]. This makes the recognition of disordered
speech a challenging task [5, 6]. Meanwhile, as speech dis-
orders always come together with loss of abilities in physical
motion, there is a popular demand of hands-free and speech-
enabled assistive technologies to help such people [7, 8].

Resurgence of deep learning technologies in the past decade
improved the performance of state-of-the-art automatic speech
recognition systems [9, 10, 11, 12, 13, 14]. However, these sys-
tems are not directly usable by people with speech disorders
due to the large mismatch against disordered speech. Hence,
there has been growing research interest in developing deep
neural network (DNN) based modeling techniques suitable for
disordered speech [15, 16, 17, 18, 19, 20, 21]. The underlying
neuro-motor conditions of people suffering from speech impair-
ment, often compounded with co-occurring physical disabili-
ties, lead to the difficulty in collecting large quantities of disor-
dered speech required for automatic speech recognition (ASR)
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system development [22, 23, 24]. In addition, varying speech
disorder characteristics and levels of severity create a large vari-
ation among different dysarthric speakers. These factors com-
bined impose limitations on the performance of current disor-
dered speech recognition systems [17, 18, 19, 20, 21].

Data augmentation proves to be an effective method for
dealing with data sparsity and improving the performance of
DNN acoustic models for normal speech recognition [14, 25,
26, 27, 28, 29, 30], as it enables the neural networks to im-
prove coverage and generalization. A wide range of augmen-
tation techniques have been investigated, including cross do-
main adaptation [25], vocal tract length perturbation (VTLP)
[26, 28, 29], spectral distortion [27], tempo perturbation [27,
29], stochastic feature mapping [28], speed perturbation [29]
and end-to-end back translation [30]. Various spectrogram de-
formations were applied in [14].

In contrast, so far there is only limited research on data
augmentation targeting disordered speech recognition. In [16],
normal speech data was applied in the bottleneck feature ex-
traction stage. In [31], data augmentation based on time- and
tempo-stretching of normal speech was investigated. In [32],
a voice conversion framework was proposed to convert nor-
mal speech to disordered speech. In [33], phonetic analysis
was conducted to compute the speaker-dependent scaling fac-
tors. These were then used in tempo adjustment to augment the
limited disordered speech data. There are two issues associated
with previous research. First, previous work in this direction
provided piece-wise solutions, lacking a systematic comparison
between augmentation approaches for disordered speech recog-
nition. Second, the main focus of previous research has been
on adjusting normal speech towards disordered speech, while
investigation on augmentation using existing disordered speech
data has been very limited.

This paper presents a systematic investigation of differ-
ent data augmentation techniques for disordered speech recog-
nition. Augmented data was generated from two different
sources: i) modification of healthy speech to disordered speech,
and ii) perturbation of existing disordered speech. Three data
augmentation techniques were used, including vocal tract length
perturbation (VTLP), tempo perturbation and speed perturba-
tion. Tempo perturbation stretches the length of the utter-
ance but keeps the shape of spectral envelope unchanged [34],
while speed perturbation resamples signals in time domain [29].
Speaker-level perturbation factors were obtained based on pho-
netic analysis described in [33] and then used on normal speech.
Global perturbation factors were used on disordered speech.
Performance evaluation was conducted on a speaker indepen-
dent DNN system implemented using an extended version of the
Kaldi toolkit [35] for the Universal Access Speech (UASpeech)



database. Learning hidden unit contributions (LHUC) [36]
based speaker adaptive training (SAT) was further applied to
model the large variability among disordered speakers in both
the original and augmented data.

The main contributions of this paper are summarized below.
To the best of our knowledge, this is the first work to systemati-
cally investigate different data augmentation techniques for dis-
ordered speech recognition. Both normal and disordered speech
were exploited in the augmentation process. Out of the three
augmentation techniques, applying speed perturbation to both
normal and disordered speech was found to give the best perfor-
mance. The system using the best augmentation approach based
on speed perturbation produced 2.92% absolute (9.3% relative)
word error rate (WER) reduction over the baseline system with-
out data augmentation. The final speaker adaptive system using
the augmented data gave an overall WER of 26.37% on the test
set containing 16 UASpeech dysarthric speakers. As far as we
know, this is the best performance reported so far on UASpeech.

The rest of this paper is organized as follows. A range of
data augmentation techniques are presented in section 2. Sec-
tion 3 describes the baseline multi-speaker adaptively trained
DNN system architecture. Section 4 presents experiments and
results on the UASpeech database. The last section concludes
and discusses possible future works.

2. Data Augmentation
We investigate three data augmentation techniques for disor-
dered speech recognition. Both disordered speech and normal
speech were used in the augmentation process. The former ap-
plied global perturbation factors while the latter applied speaker
dependent perturbation factors based on phonetic analysis.

2.1. VTLP Based Data Augmentation

The shape of vocal tract varies from speaker to speaker [37].
Vocal tract length normalization (VTLN) was proposed to coun-
teract such variations [38, 39]. By applying VTLN in the re-
verse manner, vocal tract length perturbation (VTLP) adds vari-
ability to the speech data by simulating different vocal tract
lengths [26]. Given a time-domain audio segment x(t), we
denote the corresponding frequency-domain representation as
X(f), which is the Fourier transform of x(t) . VTLP applies a
perturbation factor α taken from a discrete set (e.g. {0.9, 1.1})
along the frequency axis ofX(f). The output Y (f) is given as:

Y (f) = X(αf) (1)
In this way, VTLP perturbs the spectral envelope of the audio
segment while keeping the audio duration unchanged.

2.2. Tempo Perturbation Based Data Augmentation

Tempo perturbation stretches the duration of the audio signal
x(t) while leaving the shape of its spectral envelope untouched
[27, 29]. This is achieved by first decomposing the time-domain
audio segment x(t) into short analysis blocks and then relocat-
ing these blocks along the time axis to construct the perturbed
output y(t) [40]. A well known algorithm in this area is wave-
form similarity overlap-add (WSOLA), which makes y(t) share
the maximal similarity with x(t) by finding the optimal position
of each analysis block iteratively [34, 40].

Suppose the time-domain audio signal x(t) is decomposed
into short analysis blocks x̃m(r). These blocks are equally
spaced along the time axis by Ha (the analysis hopsize). Given
a perturbation factor α, the synthesis blocks ỹ(r) are relocated

along the time axis by Hs (the synthesis hopsize) given as:
Hs = α ·Ha (2)

WSOLA takes an iterative approach to update the positions of
analysis blocks. For example, the center of x̃m(r) is shifted by
∆m ∈ [−∆max,∆max] along the time axis, where the optimal
value of ∆m is obtained by maximizing the cross-correlation
between x̃m(r) and x̃m−1(r). This ensures that the periodic
structures of the adjusted analysis frame are optimally aligned
with structures of the previously copied synthesis frame in the
overlapping region when both frames use the synthesis hopsize
Hs. The hann window function w(r) is then applied on the
adjusted analysis block to compute the synthesis block ỹm(r)
[34, 40]. After finishing all iterations, the synthesis frames are
processed in order to reconstruct the actual time-scale modi-
fied output signal y(t) in a similar manner as conventional OLA
[41]. In this way, y(t) keeps the same spectral envelop shape as
x(t), but has a different length.

2.3. Speed Perturbation Based Data Augmentation

Speed perturbation resamples the audio signal in time domain
[29]. Given an audio segment x(t), a perturbation factor α is
applied along the time axis and gives the output y(t) as:

y(t) = x(αt) (3)
In frequency domain, this is equivalent to the following change:

X(f) −→ 1

α
X(

1

α
f) (4)

where X(f) and 1
α
X( 1

α
f) represent the Fourier transform of

x(t) and y(t) respectively. In this way, speed perturbation leads
to both change in the audio duration and perturbation in the
spectral envelope [29, 42]. Table 1 summarizes the implement
domain and effects of VTLP, tempo perturbation (denoted as
“tempo”) and speed perturbation (denoted as “speed”).

Table 1: Comparison of implement domain and effects of VTLP,
tempo perturbation and speed perturbation. “3” indicates that
change occurs after perturbation.

VTLP tempo speed
Implement Domain X(f) x(t) x(t)

Signal Duration no change 3 3
Spectral Envelope 3 no change 3

2.4. Speaker Dependent Perturbation Factor Estimation

Given the large mismatch in speaking rate between normal
and disordered speakers and high variability among disordered
speakers, speaker dependent perturbation factors were applied
when modifying normal speech to disordered speech.The fac-
tors were obtained based on phonetic analysis described in
[33]. We performed force alignment using a GMM-HMM sys-
tem based on the HTK toolkit [43] to get frame-level phoneme
alignments, and then calculated the average phoneme duration
of each speaker (denoted as lCi for control speaker Ci and lDj

for dysarthric speaker Dj). For dysarthric speaker Dj , we took
the average of lCi (denoted as lC ) as the reference to compute
the speaker dependent perturbation factor FDj , given as:

FDj =
lC
lDj

(5)

FDj was then used as the perturbation factor when modifying
normal speech to the speech of dysarthric speaker Dj .
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Figure 1: Architecture of the hybrid DNN system. The dashed line indicates the connecting component is an optional block. Retaining
connection (a) leads to the speaker-independent baseline system, while retaining connection (b) leads to the system with LHUC SAT.

3. Baseline ASR System Description
This section describes the baseline ASR system in terms of the
hybrid DNN architecture and learning hidden unit contributions
(LHUC) [36] based speaker adaptive training.

3.1. Hybrid Deep Neural Network Architecture

The structure of the hybrid deep neural network (DNN) acous-
tic model contains seven hidden layers. Each hidden layer con-
tains a basic set of neural operations performed in sequence, i.e.
affine transformation (in green), rectified linear unit (ReLU) ac-
tivation (in yellow) and batch normalization (in orange). Apart
from this, linear bottleneck projections (in light green) are ap-
plied to the inputs of the intermediate five hidden layers to re-
duce the number of network parameters. Dropout operations (in
grey) are applied to the outputs of the first six hidden layers to
prevent over-fitting. Softmax activation (in dark green) is used
in the output layer. To speed up the training process and cir-
cumvent the vanishing gradient problem, two skip connections
are used to connect the output of the first layer to the third layer
and the output of the fourth layer to the sixth layer respectively.
Figure 1 illustrates the architecture of the hybrid DNN system.

Multi-task learning (MTL) [44] was used to train the hybrid
DNN system shown in Figure 1. The labels for the two tasks
are based on frame-level tied triphone states and monophone
alignments respectively. The alignments were obtained from a
GMM-HMM system implemented using the HTK toolkit [43].
Incorporating frame-level monophone alignments in the labels
reduces the risk of over-fitting to unreliable frame-level triphone
states computed from disordered speech. The loss function of
the mutli-task learning is as follows:

LMTL = λ·Ltristate + (1− λ)·Lmono (6)

where Ltristate is the cross-entropy loss for the tied triphone
state task, Lmono is the cross-entropy loss for the monophone
task, and 0 ≤ λ ≤ 1 is a tunable task weight parameter.

3.2. LHUC Based Speaker Adaptive Training

To model the large variability among disordered speakers,
learning hidden unit contributions (LHUC) [36] based speaker
adaptive training (SAT) was used. Speaker-level LHUC scal-
ing factors were applied to the ReLU activation output in the
first layer, as shown by connection (b) in Figure 1. Super-
vised estimation of the LHUC factors was performed during the
training stage, where the LHUC factors were updated once per
mini-batch together with the network parameters. Unsupervised
LHUC adaptation was performed during the test stage, where
the LHUC factors were updated once per utterance.

4. Experiments and Results
4.1. Task Description

The UASpeech [22] is an isolated word recognition task consist-
ing of 16 dysarthric and 13 control speakers. The speech ma-
terials contain 155 common words and 300 uncommon words.
There are 3 blocks per speaker, each containing all 155 com-
mon words and one third of the uncommon words. We treated
block 1 and block 3 of all 29 speakers as training set, and block
2 of the 16 dysarthric speakers as test set. Silence stripping was
performed using a GMM-HMM system to remove redundant si-
lence in the recordings, as described in our previous work [18].
For the baseline system without data augmentation, the training
set contained 99195 utterances (∼30.6 hours) and the test set
contained 26520 utterances (∼9 hours).

4.2. Experiment Setup

We implemented the techniques discussed in section 2 to per-
form data augmentation on the training set and left the test
set untouched. The HTK toolkit [43] was used for VTLP.
The tempo command of the Sox toolkit [45] was used for
tempo perturbation, which is based on WSOLA. The speed
command of Sox was used for speed perturbation. Following
[29], three sets of global perturbation factors were applied on
the disordered speech: {0.9, 1.1}, {0.9, 0.95, 1.05, 1.1} and
{0.85, 0.9, 0.95, 1.05, 1.1, 1.15}. Speaker dependent perturba-
tion factors were applied when modifying normal speech to tar-
get disorder speech, as discussed in section 2.4. The speaker-
level scaling values are shown in Figure 2.
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Figure 2: Speaker-level scaling factors for modifying normal
speech to target disordered speech in the order of intelligibility
[15, 22]. A factor F < 1 slows down the normal speech while
F > 1 speeds up the normal speech.

In our experiments, the hybrid DNN acoustic model was
implemented using the Kaldi toolkit [35]. A 9-frame context
window was used in the system. The inputs were 80-dimension
filter bank (FBK) + ∆ features. The first six hidden layers con-
tain 2000 neurons each, while the dimension of the linear bot-
tleneck projections is 200 and dropout rate is 20%. The seventh
hidden layer contains 100 neurons. The system was trained by



Table 2: Performance on the 16 UASpeech dysarthric speakers of different data augmentation approaches applied on the training set.
Here “CTL” / “DYS” stands for normal / disordered speech. “tempo” / “speed” stands for tempo / speed perturbation. “2x”, “4x”
and “6x” refer to the amount of augmented data. “Very low”, “Low”, “Mid” and “High” refer to intelligibility of the DYS groups.

Sys. ID Data Augmentation # Hours LHUC WER%
Method CTL DYS SAT Very low Low Mid High Overall

1 NA 30.6 7 69.82 32.61 24.53 10.40 31.45
2 NA 30.6 3 64.39 29.88 20.27 8.95 28.29
3 VTLP 1x - 48.0 7 68.68 31.84 22.71 9.48 30.35
4 Tempo 1x - 52.2 7 70.71 32.78 25.12 10.32 31.77
5 Speed 1x - 52.2 7 67.52 31.55 21.96 9.57 29.92
6 VTLP - 2x 65.5 7 69.98 30.08 21.39 9.65 29.97
7 Tempo - 2x 65.9 7 69.32 31.75 23.94 10.07 30.90
8 Speed - 2x 65.9 7 68.43 29.60 21.37 10.44 29.79
9 Speed - 4x 100.9 7 67.20 29.86 21.45 10.04 29.47

10 Speed - 6x 136.7 7 67.15 30.07 21.25 10.17 29.52
11 Speed 2x 2x 130.1 7 66.45 28.95 20.37 9.62 28.73
12 Speed 4x 4x 207.5 7 66.26 28.60 19.90 9.68 28.53
13 Speed 2x 2x 130.1 3 62.50 27.26 18.41 8.04 26.55
14 Speed 4x 4x 207.5 3 62.44 27.55 17.35 7.93 26.37

back-propagation based on RMSProp optimizer. For multi-task
learning, the task weight parameter λ was set as 0.5, giving the
same weight to both tied triphone state and monphone task. Fol-
lowing [15], a uniform language model was used in decoding.

4.3. Performance of Data Augmentation

Table 2 shows the performance of different data augmentation
approaches applied on the training set. “2x”, “4x” and “6x”
refer to the amount of augmented data. Several trends can be
observed. 1) Sys.3-5 show that for augmentation using normal
speech, speed perturbation gives the best overall performance
with an absolute WER reduction of 1.53% over the baseline
(Sys.1). 2) Sys.6-8 demonstrate that for augmentation using
disordered speech, speed perturbation also gives the best over-
all performance. Therefore, we proceed with speed perturbation
to generate more augmented data in the remaining experiments.
3) Sys.8-10 indicate that perturbing the disordered speech by
{0.9, 0.95, 1.05, 1.1}(4x) works better than {0.9, 1.1}(2x) or
{0.85, 0.9, 0.95, 1.05, 1.1, 1.15}(6x). 4) Sys.8-9,11-12 show
that augmentation using both normal speech (with speaker de-
pendent factors) and disordered speech (with global factors) can
further improve the performance by an absolute WER reduction
of 0.94% (Sys.12 over Sys.9), while increasing the amount of
augmented data produces only marginal improvement (Sys.12
over Sys.11). The best speaker-independent system with data
augmentation (Sys.12) produces 2.92% absolute (9.3% rela-
tive) WER reduction over the speaker-independent baseline sys-
tem without data augmentation (Sys.1).

4.4. Peformance of LHUC SAT

LHUC based speaker adaptive training was further applied to
model the variability among disordered speakers in both the
original and augmented data (see Table 2, Sys.2,13-14). The
augmented data was assigned to individual target dysarthric
speakers for the speaker-level LHUC adaptation. This leads to
a further 2.16% absolute WER reduction (Sys.14 over Sys.12),
indicating that LHUC SAT contributes to modelling the large
variability among disordered speakers. The final speaker adap-
tive system using the best augmentation approach gives an over-
all WER of 26.37% on the test set containing 16 UASpeech

dysarthric speakers (see Table 2, Sys.14). To the best of our
knowledge, this corresponds to an absolute WER reduction of
1.51% over the best published system on UASpeech, as shown
in Table 3.

Table 3: A comparison between published systems on UASpeech
and our system. Here “DA” refers to data augmentation.

Systems WER%

Sheffield-2013 Cross domain augmentation [16] 37.50
Sheffield-2015 Speaker adaptive training [17] 34.80
CUHK-2018 DNN System Combination [18] 30.60

Sheffield-2019 Kaldi TDNN + DA [33] 27.88
Speed perturb + LHUC SAT (Table 2, Sys.14) 26.37

5. Conclusions
This paper presents a systematic investigation of different data
augmentation techniques for disordered speech recognition. It
suggests that speed-perturbation based augmentation produces
the largest improvement in system performance despite the
huge mismatch between normal and disordered speech. Fu-
ture research will focus on more powerful data augmentation
techniques to cover other features of disordered speech, such as
articulation imprecision, reduced intensity and disfluency.
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[13] C. Lüscher, E. Beck, K. Irie et al., “RWTH ASR Systems for
LibriSpeech: Hybrid vs Attention,” in INTERSPEECH, 2019, pp.
231–235.

[14] D. S. Park, W. Chan, Y. Zhang et al., “SpecAugment: A Simple
Data Augmentation Method for Automatic Speech Recognition,”
in INTERSPEECH, 2019, pp. 2613–2617.

[15] H. Christensen, S. Cunningham, C. Fox et al., “A comparative
study of adaptive, automatic recognition of disordered speech,” in
INTERSPEECH, 2012, pp. 1776–1779.

[16] H. Christensen, M. Aniol, P. Bell et al., “Combining in-domain
and out-of-domain speech data for automatic recognition of dis-
ordered speech.” in INTERSPEECH, 2013, pp. 3642–3645.

[17] S. Sehgal and S. Cunningham, “Model adaptation and adaptive
training for the recognition of dysarthric speech,” in Proceedings
of SLPAT 2015, 2015, pp. 65–71.

[18] J. Yu, X. Xie, S. Liu et al., “Development of the CUHK Dysarthric
Speech Recognition System for the UASpeech Corpus.” in IN-
TERSPEECH, 2018, pp. 2938–2942.

[19] S. Liu, S. Hu, Y. Wang et al., “Exploiting Visual Features using
Bayesian Gated Neural Networks for Disordered Speech Recog-
nition,” in INTERSPEECH, 2019, pp. 4120–4124.

[20] S. Liu, S. Hu, X. Liu et al., “On the Use of Pitch Features for
Disordered Speech Recognition,” in INTERSPEECH, 2019, pp.
4130–4134.

[21] S. Hu, S. Liu, H. F. Chang et al., “The CUHK Dysarthric Speech
Recognition Systems for English and Cantonese,” in INTER-
SPEECH, 2019, pp. 3669–3670.

[22] H. Kim, M. Hasegawa-Johnson, A. Perlman et al., “Dysarthric
speech database for universal access research,” in INTER-
SPEECH, 2008.

[23] D.-L. Choi, B.-W. Kim, Y.-J. Lee et al., “Design and creation
of dysarthric speech database for development of QoLT software
technology,” in Oriental COCOSDA. IEEE, 2011, pp. 47–50.

[24] F. Rudzicz, A. K. Namasivayam, and T. Wolff, “The TORGO
database of acoustic and articulatory speech from speakers with
dysarthria,” Language Resources and Evaluation, vol. 46, no. 4,
pp. 523–541, 2012.

[25] P. Bell, M. Gales, P. Lanchantin et al., “Transcription of multi-
genre media archives using out-of-domain data,” in 2012 IEEE
SLT Workshop. IEEE, 2012, pp. 324–329.

[26] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation
(VTLP) improves speech recognition,” in Proc. ICML Workshop
on Deep Learning for Audio, Speech and Language, vol. 117,
2013.

[27] N. Kanda, R. Takeda, and Y. Obuchi, “Elastic spectral distortion
for low resource speech recognition with deep neural networks,”
in 2013 IEEE ASRU Workshop. IEEE, 2013, pp. 309–314.

[28] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep
neural network acoustic modeling,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 23, no. 9, pp.
1469–1477, 2015.

[29] T. Ko, V. Peddinti, D. Povey et al., “Audio augmentation for
speech recognition,” in INTERSPEECH, 2015, pp. 3586–3589.

[30] T. Hayashi, S. Watanabe, Y. Zhang et al., “Back-translation-style
data augmentation for end-to-end ASR,” in 2018 IEEE SLT Work-
shop. IEEE, 2018, pp. 426–433.

[31] B. Vachhani, C. Bhat, and S. K. Kopparapu, “Data Augmentation
Using Healthy Speech for Dysarthric Speech Recognition.” in IN-
TERSPEECH, 2018, pp. 471–475.

[32] Y. Jiao, M. Tu, V. Berisha et al., “Simulating dysarthric speech
for training data augmentation in clinical speech applications,” in
ICASSP. IEEE, 2018, pp. 6009–6013.

[33] F. Xiong, J. Barker, and H. Christensen, “Phonetic analysis of
dysarthric speech tempo and applications to robust personalised
dysarthric speech recognition,” in ICASSP. IEEE, 2019, pp.
5836–5840.

[34] W. Verhelst and M. Roelands, “An overlap-add technique based
on waveform similarity (WSOLA) for high quality time-scale
modification of speech,” in ICASSP. IEEE, 1993, pp. 554–557.

[35] D. Povey, A. Ghoshal, G. Boulianne et al., “The Kaldi speech
recognition toolkit,” in 2011 IEEE ASRU Workshop. IEEE, 2011.

[36] P. Swietojanski, J. Li, and S. Renals, “Learning hidden unit contri-
butions for unsupervised acoustic model adaptation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 24, no. 8, pp. 1450–1463, 2016.

[37] H. Wakita, “Direct estimation of the vocal tract shape by inverse
filtering of acoustic speech waveforms,” IEEE Transactions on
Audio and Electroacoustics, vol. 21, no. 5, pp. 417–427, 1973.

[38] L. Lee and R. C. Rose, “Speaker normalization using efficient fre-
quency warping procedures,” in ICASSP. IEEE, 1996, pp. 353–
356.

[39] E. Eide and H. Gish, “A parametric approach to vocal tract length
normalization,” in ICASSP. IEEE, 1996, pp. 346–348.

[40] J. Driedger and M. Müller, “A review of time-scale modification
of music signals,” Applied Sciences, vol. 6, no. 2, p. 57, 2016.

[41] J. Allen, “Short term spectral analysis, synthesis, and modification
by discrete Fourier transform,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 25, no. 3, pp. 235–238, 1977.

[42] J. Andén and S. Mallat, “Deep scattering spectrum,” IEEE Trans-
actions on Signal Processing, vol. 62, no. 16, pp. 4114–4128,
2014.

[43] S. Young, G. Evermann, M. Gales et al., “The HTK book,” Cam-
bridge university engineering department, vol. 3, 2006.

[44] R. Caruana, “Multitask learning,” Machine learning, vol. 28,
no. 1, pp. 41–75, 1997.

[45] Sox, audio manipulation tool. (accessed Feb 10, 2020). [Online].
Available: http://sox.sourceforge.net/


